
EUROGRAPHICS 2003 / J. Flores and P. Cano Poster Presentations

Artistic representation of Ink and Paper Pictures from
Gray-Scale Photographs

G. Arroyo, D. Martín

Software Engineering Department, University of Granada, Granada, Spain
arroyo|dmartin@ugr.es

Abstract

In this article we introduce a path-finding and reconstruction strokes algorithm applied as ink picture. Also, first
we apply filters to photographs to extract characteristics from a scene, then we show how to modify strokes like an
artist could do it. We define a stroke structure in which for every stroke we have vertexes and every vertex depends
from the previous one. Finally we use smooth strokes with functions to simulate different kinds of brushes and
papers.

Categories and Subject Descriptors(according to ACM CCS): 1.3.3 [Computer Graphics]: Non-Photorealistic Ren-
dering

1. Introduction

Book pictures illustration is a complex and completely man-
ual technique at the present time, increasingly it is tried to do
this kind of illustrations in an automatic way from 3D mod-
els. Paradoxical though it may seem, process is just manual
when we make the model and it is desirable that to be com-
pletely automatic. For all that, we must try to generate this
pictures from photographs.

As stroke simulation is almost done with deformable
models of 3D brushes1, and ink brush simulation for 3D
models is just surprising2, 3, we could think that the true
problem is recognizing contours from a bidimensional im-
age, and his transformation to strokes like a human being
could do it.

2. Overview and Related Work

First main idea is to make series of transformations from the
original image in two main steps:

1. Contours detection
2. Strokes detection

Once stroke are detected, we do a detection process based
on artist drawing way, it splits very long strokes, simulating
brush drawing process. A human being almost never draws

straight strokes, or perfect angles, but he usually opens or
closes them, in others words, he changes them.

2.1. Contour detection: Canny’s Algorithm

First of all, we smooth origin image, for that, we dis-
cretize Gaussian function given by expression:S(x,y,σ) =

ke
−(x2+y2)

2σ2

Whereσ is standard deviation of the Gaussian function.
Value given byk is useful to make all area of the function
equal to 1, in this way we have all function values normal-
ized (and we don’t loose information), his value is:k = 1

2πσ2

Next, we make a convolution mask with discretized val-
ues, and we applied to origin image. Then we get the smooth
imageI .

Next, we apply Canny’s algorithm. LetGx(I) be a gradient
in x from imageI and letGy(I) be the gradient iny from
imageI . We do a convolution for calculating these gradients
with discretized and normalized values of partial difference
in x andy in the Gaussian function:
∂S(x,y,σ)

∂x = −x
2πσ4 e−

x2+y2

2σ2 , ∂S(x,y,σ)
∂y = −y

2πσ4 e−
x2+y2

2σ2

If we apply both masks to imageI we get two news im-

c© The Eurographics Association 2003.

G. Arroyo, D. Martín / Artistic representation of Ink and Paper Pictures from Gray-Scale Photographs

ages:Ix = Gx(I) andIy = Gy(I), that we use them to calcu-
late angles and directions of contours.

Let M = Gx(I)2+Gy(I)2 be applied to every pixel, where

M is magnitude image, and letD = atan(Gy(I)
Gx(I)

) be applied
to every pixel, whereD is direction image. Finally, we can
suppress from imageM non-maximums values, for that, we
define two threshold values given bytl y th. In this case,
∀px,y ∈ M we just get in a new gradient image (calledA)
pixels that comply withtl < px,y < th.

We suppress less significant borders in a process called
hysteresis. Algorithm we have used is the following:

For each pointP1 given by(x,y):

• if A(x,y) haven’t visited yet:

– if A(x,y) < tl then:

◦ F(x,y) = non−border
◦ markP1 as visited

– if A(x,y) > th then:

◦ F(x,y) = border
◦ markP1 as visited
◦ follow the direction given byD(x,y) from P1 to

both sides, whileA(i, j) > tl :

� mark pointP2 given by(i, j)
� markP2 as visited

Main problem is that contours with Y shape are usually
splitted. But this isn’t a big problem because we can recover
them in a following step.

2.2. Stroke detection

Because Canny’s algorithm permits to obtain only one pixel
borders we can do an algorithm which permits getting larger
than possible strokes. Our algorithm for stroke detection is
mainly based in introduce pixelPi into a list. This pixel is
selected because it is surrounded by less pixels than others
into a window with size given bytv. Next pixel is similarly
chosen with an exception, if it is just in the list it cannot be
selected, but otherwise we introduce it into the list.

The first algorithm we could think about is the following:

1. P0 = Window(P, tv)
2. If P0 doesn’t exists end
3. Otherwise:
4. Get the nearest pixelPi+1 that we haven’t taken yet
5. If Pi+1 doesn’t exists go to 1 (we have a new stroke), else

take it.

WhereWindowis a function which chose a pixel hasn’t
been chosen yet and it is surrounded by less pixels than oth-
ers into a window with size given bytv, which is the maxi-
mum distance permitted between this pixel and other one to
make an unique stroke.

Main problem in this algorithm come determined by ran-
dom in the pointP0 for every stroke, in this way, we could
get very short strokes when they are only one actually. To
avoid this, we don’t end algorithm in step 2, we invert the
list where we are stocking pixels and we begin again from
step 2 withP0 as the first point into the path.

Then path is ordered in the same way that Canny’s algo-
rithm. From this point we make a list with angles and other
with distances from one pixel to the following. In this way,
every pixel depends from the previous one.

Figure 1: Stroke path parameters and his representation. P0
is the initial point of the stroke, whileαi and di are angles
and distances between two consecutive points

3. Stroke stylization

As we have said, human being never make perfect strokes,
then we apply different modifications to strokes we get with
filters. Next, let us try to understand how an artist draw with
ink over paper:

1. He changes angles and size in strokes
2. He has different sizes of brush
3. He has different kinds of paper
4. He uses more or less number of stroke to do some picture

Changing angles in strokes is trivial because structure we
have got. It is easy to change angles given byαi (see Fig. 1),
these changes open or close the stroke from the origin. Also,
noise in angles can change straight lines in curve strokes.

In the same way, changing size in stroke is trivial too, be-
cause if we decrease distances given bydi (see Fig. 1), we
will have got shorter stroke. Also, we can use noise to make
strokes with different lengths, shorter or larger, in an arbi-
trary way.

We can make bigger changes too, because every stroke
belong to a list and it is made by points, we can split this
list according to criteria like angle or stroke size. Also, we
can modify angles and position of every stroke, in a way to
appear be two differents strokes.

If we want to make different sizes of brush we need define
a new functionw. It takes as parameter the stroke. This func-
tion mainly depends from stroke size, and it can be any, but
we recommend following functions:w(φ) = φ

2kmax i f φ <
1
2 andw(φ) = (φ

2 +φ2)kmax i f φ ≥ 1
2 , whereφ is between

c© The Eurographics Association 2003.

G. Arroyo, D. Martín / Artistic representation of Ink and Paper Pictures from Gray-Scale Photographs

0 and 1, andkmax is maximal stroke width. This function de-
fines how stroke begins and ends, and how is its width for
every point in it.

For different kinds of paper absorption we can use other
function t, whose values will be used as inputs to an alpha
channel when we draw different strokes. In the same way,

t can be take any value, we recommendt(φ) = acos(φ)
π kmax,

wherekmax∈ [0,1].

Let gi be the output of width function and letti be the
output of transparency function in a point given byi. Then,
to draw a stroke we generate two points translated topi and
pi+1 respectively, and we rotate themπ2 radians in relation to
αi (calledp j andp j+1 respectively), we generate a polygon
formed by following points:pi , pi+1, p j+1 andp j .

We don’t evaluate shortest strokes, only them which are
longer than a threshold value given byl . We recommend for
ink color the following RGBA vector: (0.2, 0.2, 0.3,kr ti),
wherekr = 0.6 orkr = 0.8, andti is the output from evaluate
t in point i.

But, even after correcting angles and distances it is dif-
ficult to a human being draw something like this, because
most of angles are straight angles or corners. To avoid that
we define strokes from Bèzier curves, whose control points
come determined by lists of angles and distances with an
origin point (see Fig. 1).

Output is a polygon blend generated by lists of strokes
(with changes in angles and distances) and Bèzier curves
(which are applied with a width function defined by:w(φ) =
acos(φ)

π k).

Finally, it is done a smooth correction (simuling paper ab-
sorption), drawing a half-transparent picture with soft rota-
tion angles (from−β to β).

4. Results and Conclusions

Even thought ink human person pictures or, in general, life
beings aren’t usually used and almost all ink jobs are used
in buildings, we have tried our algorithm in organic models
(see Fig. 3), getting pretty good results.

Parametersσ, tl andth affect basic sketch from the picture,
a hight value ofσ will smooth image in the beggining of the
algorithm. A lower value ofth or higher oftl will soil picture
with more details. But, mainly parameters in basic lines are
tv y l , because this values affect to decision of what lines are
valid and what are only points.

We have used two kinds of strokes for all images, one use
a Bèzier curve and other do minimal changes in angles to the
original path (see Fig. 4).

References

1. B. Baxter, V. Scheib, M.C. Lin, D. Manocha “DAB:
Interactive Haptic Painting with 3D Virtual Brushes”,

Figure 2: From left to right and from top to bottom, com-
parison to original image with output images from: Canny’s
algorithm, Sobel’s filter, Robberts’s filter, Canny’s algorithm
with path-finding algorithm, and finally, our algorithm with
followings parameters:σ = 1, tl = 0, th = 0.1, tv = 4, l = 3,

kr = 0.6 and as width function fw(x) = acos(x)
πkmax

, and as trans-

parency function ft(x) = acos(x)
πkmax

in a kind of stroke and
ft(x) = xkmax in the other.

Figure 3: Our algorithm applied to an organic model with
the following parameters:σ = 1, tl = 0, th = 0.2, tv = 4,

l = 6, kr = 0.6 and as width function fw(x) = acos(x)
πkmax

, and

for transparency function ft(x) = acos(x)
πkmax

in a kind of stroke
and ft(x) = xkmax in the other.

Proceedings of SIGGRAPH 01, Computer Graphics
Proceedings, Annual Conference Series, pp. 461-468,
2001 1

2. M. Salisbury, C. Anderson, D. Lischinsky, D.H.
Salesin, “Scale-dependent reproduction of pen-and-ink
illustrations”, Proceedings of SIGGRAPH 96, Annual
Conferences Series, pp. 461-468, 19961

3. M.P. Salisbury, M.Wong, J.F. Hughes, D.H. Salesin,
“Orientable textures for image-based pen-and-ink illus-
tration”, Proceedings of SIGGRAPH 97, Annual Con-
ferences Series, pp. 401-406, 19971

c© The Eurographics Association 2003.

G. Arroyo, D. Martín / Artistic representation of Ink and Paper Pictures from Gray-Scale Photographs

Figure 4: We have changed parameters in Bèzier control
points and some angles. Result is similar to change shad-
ows in a picture. Parameters used in both images are:σ = 1,
tl = 0, th = 0.1, tv = 4, l = 3, kr = 0.8

4. D. Martín, J.D. Fekete, J.C. Torres “Flattening 3D ob-
jects using silhouettes”,Eurographics’02, pp. 239-248,
Saarbrucken, Germany, 2002

5. D. Marr, “Vision - A Computational Investigation into
the Human Represent”1982

6. J.A. Aznar, M. Moreno, “Simulación Computacional
del Procesamiento Visual Biológico de Bajo Nivel”Va-
lencia, 2001

Figure 5: Differents kinds of parameters and functions in
draw process, the first of strokes uses following values:
σ = 1, tl = 0, th = 0.07, tv = 3, l = 4, kr = 0.6 and as
width functions: fw(x) = x

2kmax i f x < 1
2 , and fw(x) =

(x
2 + x2)kmax i f x ≥ 1

2 , and for transparency functions

ft(x) = acos(x)
πkmax

in both kinds of stroke. Second one use fol-
lowing values:σ = 1, tl = 0, th = 0.1, tv = 3, l = 4, kr = 0.8

and as width functions fw(x) = acos(x)
πkmax

, and for transparency

functions ft(x) = acos(x)
πkmax

in a kind of stroke and ft(x) = xkmax

in the other. Results are similar.

Figure 6: For elements with too much details it is useful use
th between 0.2 and 0.4, for this photograph we have used:
σ = 1, tl = 0, th = 0.2, tv = 4, l = 3, kr = 0.2

Figure 7: Photograph with too much noise are smoothed be-
cause parameterσ, but details aren’t supressed (thanks to
parameter th), parameter used are:σ = 1, tl = 0, th = 0.1,
tv = 4, l = 3, kr = 0.2 width and transparency functions are
same as before.

c© The Eurographics Association 2003.

