
AUTOMATIC COMPUTER GENERATION OF STIPPLED
ILLUSTRATIONS WITH COLOUR FELT-TIP PENS

First Author Name, Second Author Name
Anonymous location

author@server, author@server

Keywords: Rendering, Non-Photorealistic Rendering, Painting-like rendering, Drawing.

Abstract: Nowadays, non-photorealistic rendering is an area that not only focuses on simulating what artists do or the
tools they use, but also on generating new expressive tools for digital art. In this paper we present a new
algorithm to generate beautiful stippling illustrations with colour felt-tipped pen from a photograph or an
image. This technique is not currently used by artists due to technical limitations, and thus the algorithm
may prove a useful addition to the tools used by an artist. We introduce a novel stochastic approach to place
coloured dots in a specific order based on the information about the contrast, borders and the histogram of
the input image. The system is able to generate an unlimited number of non regular synthetic coloured dots
without the need for scanning. These dots will be composed in a specific order to generate the final illustration.

1 INTRODUCTION

Stippling is the technique of drawing using dots,
which are composed of pigment in a single colour ap-
plied with a pen or a brush, changing the density to
obtain different shades. The stippling technique can
be altered to use colours. The technique should not be
confused with pointillism, which uses small distinct
dots of colour to create the impression of a wide selec-
tion of other colours and blending. The technique of
coloured stippling allows overlapping of dots to shade
the illustration, which pointillism does not permit.

Several problems arise when an artist attempts to
stipple an illustration using colour felt-tip pens. The
first problem is the limited choice of colours available.
A second problem is that the amount of ink in the sac
and the porosity of the tip makes stippling complete
illustrations expensive, especially with medium-tip
markers. The quality of the paper must also be consid-
ered, as thin paper cannot tolerate a great amount of
ink and may therefore tear, whereas thick paper may
cause the ink to spread so much that shapes become
blurred and poorly defined.

These kinds of illustrations are visually interest-
ing but they are very hard to produce. If artists were
able to efficiently use this technique, they could pro-

duce highly aesthetic images that maintain detail and
shading even with large dots. We aim to provide the
tools to produce these kinds of illustrations using a
computer and an input photograph or image.

There are a number of previous works about stip-
pling(Maciejewski et al., 2007; Mould, 2007) but they
use only one ink and do not simulate felt-tip pens. In
this paper we present a new algorithm that uses the
information about the contrast, the borders and the
histogram to define a set of cells with a certain prob-
ability. The algorithm uses this probability to render
the dots in a specific order, adding detail in every it-
eration. The algorithm can be stopped at any moment
by the user but it also detects when the illustration has
finished, and thus stops automatically.

This paper is structured as follows: In Section 2
we discuss related works. In Section 3 we present an
overview of our system. In Section 4 we explain the
algorithms in detail. Section 5 discusses the results of
our approach. The paper is concluded in Section 6.

2 PREVIOUS WORKS

Abstract representation of still images was introduced
by Haeberli(Haeberly, 1990) using image colour gra-



dient and user interactivity for painting. Hertz-
mann(Hertzmann, 1998) places curved brush strokes
of multiple sizes on images for painterly rendering.
The technique fills with colour by using large strokes
in the middle of a region and progressively smaller
strokes as one approaches the edges of the region.
Shiraishi and Yamaguchi(Shiraishi and Yamaguchi,
2000) improve the performance of the above method
approximating the continuous strokes by placing rect-
angular strokes discreetly along the edges to create a
painterly appearance. Santella and DeCarlo(Santella
and DeCarlo, 2002) use eye tracking data to obtain
points on images and create painterly rendering with
that information. There are good works for paint-
ing terrains(Coconu et al., 2006; Bhattacharjee and
Narayanan, 2008), but they do not work with general
models. All these techniques work well on single im-
ages but do not simulate colour stippling.

Most of the related research on stippling is fo-
cused on generating dots according to the shading of
a photograph, paying almost no attention to the shape
of dots or the techniques that artists use(Secord et al.,
2002). Some methods propose using circles instead
of realistic dots(Mould, 2007; Gooch and Gooch,
2001; Schlechtweg et al., 2005; Yuan et al., ; Lu
et al., 2003). This differs noticeably from the illus-
trations created by artists because natural dots have
a gradient. Other methods focus on distributing the
dots correctly along a surface according to the shad-
ing(Secord, 2002; Pastor et al., 2004). In these cases,
the use of Central Voronoy diagrams produces eas-
ily recognisable patterns. Renderbots is based on
the idea of particles but the results, when they sim-
ulate stippling, also have the same problems with
patterns(Schlechtweg et al., 2005). No works use
coloured dots because it is not a common technique.

In the next Section, we will describe our solution
for stippling with simulated colour felt-tip pens.

3 OVERVIEW

First, it is necessary to discuss the proposed sys-
tem, which is based on the scheme presented
in Figure 1. The algorithm has the following
steps:

1: The information is obtained from the input image.
2: A matrix of probability is generated from this in-

formation.
3: The algorithm enters in a loop:
4: loop
5: The place and size of the dot is computed based

on the matrix.

6: A new dot is generated with a simplified colour
of the region.

7: The dot is composed in the output image.
8: end loop

Figure 1: An overview of the algorithm.

The matrix of probability guides the dot placing
process in such a way that it determines the order of
dot placement.

Once the matrix has been generated, the algorithm
for dot placement searches for a local maximum in the
matrix by using a stochastical algorithm. If the local
maximum is not 0, a dot is placed there. If the local
maximum is 0, the algorithm repeats the search again
until a specified number of iterations is reached, and
then it stops. The user also has the ability to stop the
algorithm at any time interactively.

Once the dot has been placed, the matrix is up-
dated to remove a certain amount of probability,
hence the probability of a cell decreases each time a
dot is placed in the position given by the matrix of
probabilities.

In the next section, a more detailed description of
the algorithms is presented.

4 ALGORITHMS

The algorithm can be divided into several subalgo-
rithms that take an input and return an output to the
next step. These subalgorithms are explained in the
following subsections.



4.1 Obtaining information

The first step is to filter the photograph in order to
obtain relevant information before the algorithm is
used to place dots. This filtering process is based
on what artists do before they draw a stipple illus-
tration. The process may vary from artist to artist,
but in general, they begin by marking silhouettes and
stippling them. The next step is to stipple the darkest
areas of the image. Finally, it is important to stip-
ple in areas where details can be enhanced and where
there are different or relevant elements of the photo-
graph. The background is usually irrelevant, so, the
most repeated tones in the photograph are ignored by
the artist. Colour stippling is also guided by these
rules.

Therefore, the extracted information is as follows:
• Ib: the image with the magnitude of the borders of

the image.
• Ic: the contrasted image.
• H: the histogram of the image.
• mH : the maximal value of the histogram.

Ib, Ic, and the input image are scaled to a fixed
resolution for printing at the desired size. Dots are
also generated according to the resolution. Once this
step has finished, we have all the information needed
to generate the matrix of probabilities.

4.2 The Generation of the Matrix

The matrix of probabilities is a structure that stores,
not only probabilities, but also the size of the dot for
every position. This matrix has the same size as the
scaled images.

To generate the matrix (M),
the following algorithm is com-
puted:

1: for x = 0 to Width do
2: for y = 0 to Height do
2: M[x,y] � α∗ Ic[x,y]+β∗ Ib[x,y]+ γ∗H[x,y]
3: end for
4: end for

Where α, β and γ must be adjusted according to
the desired order for stippling the illustration. The
values can be easily normalized if α+ β+ γ = 1.0.
These values are adjusted to simulate the process that
artists follow, which has already been explained in
Subsection 4.2: α = 0.4, β = 0.5 and γ = 0.1. Width
and Height are the size of the matrix M.

If the value of the histogram is greater or equal to
mH , then the value of the matrix becomes 0:
M[x,y] � 0.

All the values of the matrix can be normalized.
Other thresholds can be included if more informa-
tion about the image is obtained, for example, a mask
can be taken as input and the probability of unde-
sired areas of the image removed. The size of the
dot can be stored in the matrix in a similar way:
M[x,y] size←−− 0.5∗ Ic[x,y]+0.5∗ Ib[x,y]

Once the matrix has been generated, the next step
is to iterate until all the dots are placed.

4.3 Algorithm for Positioning Dots

The algorithm for dot placement removes the patterns
of the output image. We use a method that is based on
a Rejection Sampling Algorithm but includes some
parameters that are controlled by the user.

The algorithm we propose contains
the following steps for placing each
dot:

1: iteration � 0
2: maxp � 0
3: while maxp = 0 and iteration < N IT ERS do
4: for i = 0 to i < N T EST S do
5: x � Random(0,Width−1)
6: y � Random(0,Height−1)
7: p � M[x,y]
8: if p is a new maximum then
9: maxp � p

10: s size←−−M[x,y]
11: end if
12: end for
13: iteration � iteration+1
14: end while
15: if maxp = 0 then
16: End of algorithm
17: end if
18: Generate a dot of size s
19: Blend the dot with the output image
20: Update the matrix M

The algorithm takes the following parameters as
input: N ITERS and N TESTS. N ITERS indicates
the maximal number of iterations of the algorithm
before deciding that there are no more places to
stipple. N TEST indicates the maximal number of
times to search for a higher probability. The in-
ner loop searches for a local maximum whereas the
outer loop searches for the probability in other ar-
eas. maxp indicates the maximal probability found,
whereas iteration indicates the number of iterations
before the algorithm decides that a local maximum is
found.

It is clear that the algorithm would never finish if
the values of M did not change, and for this reason,



the matrix must be updated. When a dot is placed on
the output image, a value is subtracted from the im-
age. This value depends on the intensity of the dots
placed, therefore the central cells of the dot subtracts
a higher value than the outer cells. Additionally, a cer-
tain amount is subtracted from the neighbouring cells
of the pixel, as shown in Figure 2. This value can be
adjusted in function of the distance from the middle
of the dot. The radius of the affected neighbourhood
is determined by the value of the contrast in the cell.

Figure 2: a) The dot is placed on the output image, and the
matrix is updated (in white); b) The neighbour cells are also
updated (in red).

The dots can be placed on the output image using
the following equation for every pixel of the dot:

Cd = (1−A) ·Cd +(A) ·Cs (1)

Where Cd is the destiny colour, Cs is the source
colour, and A is the value of the intensity in one pixel
of the dot.

4.4 Algorithm for Generating Colour
Dots

The automatic generation of dots removes the artifi-
cial appearance of an illustration. Before generating
a dot, the algorithm must decide the colour for the
entire dot. The fact that each individual dot cannot
contain more than one tone must be taken into con-
sideration.

The colour is determined by a simple equation:

Cdot =
Cpixel ·3.0

(Cpixel .red +Cpixel .green+Cpixel .blue)
(2)

Where Cdot is the colour of the dot, and Cpixel is
the colour of the related pixel in the source image.

This normalization of the colour produces a flatten-
ing and a reduction of the brightness, which is used in
algorithms of computer vision to simplify the illumi-
nation of the scene(Finlayson et al., 1998). Addition-
ally, if the colour is almost black, the luminosity can
be increased, especially if the intention is to print the
image. As grey colours do not contribute much detail
and can be easily produced by stippling repeatedly in
the same place, grey colours are substituted by just
two tones of grey.

The problem is reduced to generate grey scaled
dots, and then multiply the obtained colour by the lev-
els of intensity of the dot. This step is repeated for
each dot placed on the output image. White values
are not a problem because white pixels are not stip-
pled by the algorithm.

The proposed algorithm to obtain grey dots is
based on Monte Carlo methods(Jensen and Chris-
tensen, 1995). In these methods the algorithms de-
cide when the solution is false, but do not know when
the solution is true. Therefore, the algorithm iterates
a certain number of steps until it reaches an approxi-
mate solution.

Our algorithm is as fol-
lows:

1: Create a matrix (P) of local probabilities
2: Create a matrix (I) of intensity values
3: Create a matrix (A) of absorption values
4: Generate a seed
5: for i = 0 to i < N DROPS do
6: Fb(n) returns a position (px, py)
7: Deposit the ink in the returned position
8: end for
9: Apply a Gaussian filter to smooth the result

N DROPS is the number of iterations of the algo-
rithm, which can be estimated from the desired size
of the dot. The size of the matrices P, I and A is twice
the size of the dot. The matrix P is a probability den-
sity function (PDF). Therefore, P satisfies the discrete
condition ∑i, j P(i, j) = 1. I is the output image of in-
tensities, whereas A is the absorption of the paper, and
it can be obtained from a gradient image.

A small circle is a valid seed for the algorithm.
This circle writes the matrix I with a dark value at
its centre. The values of the matrix P are initialized
to 0. However, seed cells are initialised to an uni-
form value, which is scaled according to the number
of cells that comprise the seed.

A list (Lp) can be used to optimize the search
for dots with probabilities different from 0. This list
stores the positions of the cells with a probability dis-
tinct from 0. This list is updated in each iteration,
removing the cells that becomes 0.

Once the seed and its neighbours have



been computed, ink is accumulated based on
the function Fb in every step. The algorithm
to compute the function Fb(n) is the follow-
ing:

1: i � 0
2: x � Random(0,1)
3: while x ̸= 0 do
4: Get px and py from Lp[i]
5: if x≤ P[px, py] then
6: RETURN (px, py)
7: else
8: x � x−P[px, py]
9: i � i+1

10: end if
11: end while

The function returns the position where the ink is
deposited. The matrix I is used to accumulate the ink.
The values of the ink and the values of I are normal-
ized.

The viscosity of the ink and the absorption of the
paper can be easily taken into account if we add these
lines to the previous algorithm:

1: if I[px, py]≤ A[px, py] then
2: c � P[px, py]
3: else
4: c � P[px, py] · v
5: end if
6: if x < v then
7: P[px, py] � P[px, py]− c
8: end if

v is a constant of viscosity. When a cell and its
neighbours have a probability equal to 0 while the
grey value is not 1, the criteria of expansion is applied
recursively until any cell admits the shared probabil-
ity. If no cells with probability distinct from 0 are
found, it means that the paper cannot admit more ink,
and the algorithm then finishes.

A resume of the algorithm is shown in Figure 3: a)
The seed is placed on the image matrix (I), the prob-
ability is updated in the matrix P, all the cells of the
seed have the same probability (in white); b) In the
second step, the algorithm has filled a cell or the vis-
cosity modifies the probability in P, the next drop of
ink falls on a neighbour cell; c) After several steps, the
algorithm forms the dot with a gradient from black to
white.

The output dot is the generated dot of the algo-
rithm described in the previous Subsection.

Figure 3: a) First step of the algorithm; b) Second step of
the algorithm; c) After several steps of the algorithm, the
dot is formed.

5 RESULTS

The algorithm produces a stippling illustration with
colour felt tip pens that aesthetically grades the
colours, as shown Figure 4. The algorithm is able to
detect how many dots are placed on the output illus-
tration by using information of the contrasted image.
If the image background has an overall uniform tone,
it is identified and removed, as can be seen in Figure
5. The algorithm can also take a rendered image from
a 3D scene or a picture as input, which produces beau-
tiful results that are shown in Figure 6. The algorithm
also works with complex photographs, as shown in
Figure 7 that has been correctly scaled for printing on
a colour printer. The algorithm produces good results
even with very complex photographs due to the distri-
bution and size of the dots.

All these results have been generated with felt-tip
pens between 40mm and 60mm.



Figure 4: A result of our algorithm from photograph.

6 CONCLUSIONS AND FUTURE
WORKS

We have presented an algorithm that automatically
draws colour illustrations and simulates stippling with
felt-tip pens. We have developed a fast and direct
equilibration technique that is based on a probabilistic
model. The algorithm places the dots in a natural way
and in a specific order, just artists do. We have intro-
duced an automatic control that allows the algorithm
to detect when the illustration has finished. Our sys-
tem provides both interactivity and high-quality out-
put. It can utilise photographs, 3D rendered images
and illustrations as input.

Future research into how more artistic knowledge
can be included automatically within the application
is proposed. Another important issue of future work
is the introduction of temporal coherence when apply-
ing the algorithm to the frames of a video, especially
when the intention is to maintain the same colours
while objects are moving in a scene.

REFERENCES

Bhattacharjee, S. and Narayanan, P. J. (2008). Real-time
painterly rendering of terrains. In Proceedings of Sixth
Indian Conference on Computer Vision, Graphics &
Image Processing.

Coconu, L., Deussen, O., and Hege, H. C. (2006). Real-
time pen-and-ink illustration of landscapes. In NPAR
06: Proceedings of the 2nd symposium on Non-
photorealistic animation and rendering, pages 27–36.

Finlayson, G. D., Schiele, B., and Crowley, J. L. (1998).
Comprehensive colour image normalization. In ECCV

’98 : European conference on computer vision, vol-
ume 1407, pages 475–490.

Gooch, B. and Gooch, A. (2001). Non-photorealistic Ren-
dering. A. K. Peters.

Haeberly, P. (1990). Paint by numbers: abstract image rep-
resentations. In SIGGRAPH’90: Proceedings of the
17th annual conference on Computer graphics and in-
teractive techniques, pages 207–214.

Hertzmann, A. (1998). Painterly rendering with curved
brush strokes of multiple sizes. In Computer Graphics
(Annual Conferences), number 32, pages 453–460.

Jensen, H. W. and Christensen, N. J. (1995). Photon maps in
bidirectional monte carlo ray tracing of complex ob-
jects. Computers and Graphics, 19(2):215–224.

Lu, A., Morris, C., Taylor, J., Ebert, D., Rheingans, P.,
Hansen, C., and Hartner, M. (2003). Illustrative inter-
active stipple rendering. In IEEE Transactions on Vi-
sualization and Computer Graphics, volume 9, pages
127–138.

Maciejewski, R., Isenberg, T., Andrews, W. M., Ebert,
D. S., and Sousa, M. C. (2007). Aesthetics of hand-
drawn vs. computer-generated stippling. In Proceed-
ings of Computational Aesthetics in Graphics, num-
ber 3, page unknown.

Mould, D. (2007). Stipple placement using distance in a
weighted graph. In Proceedings of Computational
Aesthetics in Graphics, number 3, page unknown.

Pastor, O. M., Freudenberg, B., and Strohthotte, T. (2004).
Real-time animated stippling. In Proceedings of
NPAR 2004, volume 23, pages 62–68.

Santella, A. and DeCarlo, D. (2002). Abstracted painterly
renderings using eye-tracking data. In NPAR 02: Pro-
ceedings of the 2nd symposium on Non-photorealistic
animation and rendering, pages 53–58.

Schlechtweg, S., Germer, T., and Strothotte, T. (2005). Ren-
derbots: Multi agent systems for direct image genera-
tion. Computer Graphics Forum, 24:283–290.

Secord, A. (2002). Weighted voronoi stippling. In Proceed-
ings of NPAR, pages 37–43. ACM Press.

Secord, A., Heidrich, W., and Streit, L. (2002). Fast prim-
itive distribution for illustration. In Thirteenth Euro-
graphics Workshop on Rendering, pages 215–226.

Shiraishi, M. and Yamaguchi, Y. (2000). An algo-
rithm for automatic painterly rendering based on lo-
cal source image approximation. In NPAR 00: Pro-
ceedings of the 1st international symposium on Non-
photorealistic animation and rendering, pages 53–58.

Yuan, X., Nguyen, M. X., Zhang, N., and Chen, B. Stip-
pling and silhouettes rendering in geometry-image
space. In Proceedings of Eurographics Symposium on
Rendering, pages 193–200.



Figure 5: Some results with plain backgrounds.

Figure 6: The result after applying our algorithm to a 3d rendered image, and a real picture.



Figure 7: An illustration with a scale of 1:1, ready to be printed.


