
A Stochastic Approach to Simulate Artists Behaviour for Automatic
Felt-tipped Stippling

Germán Arroyo, Domingo Martı́n, and Marı́a Victoria Luzón

Abstract— Nowadays, non-photorealistic rendering is an area
in computer graphics that tries to simulate what artists do
and the tools they use. Stippling illustrations with felt-tipped
colour pen is not a commonly used technique by artists due
to its complexity. In this paper we present a new method to
simulate stippling illustrations with felt-tipped colour pen from
a photograph or an image. This method infers a probability
function with an expert system from some rules given by the
artist and then simulates the behaviour of the artist when
placing the dots on the illustration by means of a stochastic
algorithm.

I. INTRODUCTION

Stippling is the technique of drawing using dots, which
are composed of pigment in a single colour applied with
a pen or a brush, changing the density to obtain different
shades. The stippling technique can be altered to use colours.
This technique must not be confused with pointillism, which
uses small distinct dots of colour to create the impression
of a wide selection of other colours and blending. The
technique of coloured stippling overlaps the dots to shade
the illustration whereas it is not allowed in pointillism.

Several problems happen when an artist tries to stipple an
illustration using felt-tip pens. The first problem is that the
number of different colours of these pens are very limited. A
second problem is that the amount of ink and the porosity of
the tip makes expensive to stipple a complete illustration,
specially with medium-tip markers. The paper is also a
problem because a thin paper cannot admit a large amount of
ink, and it breaks; on the other hand, a thick paper spreads
out the ink too much, in such a way that the shapes become
blurred and undefined. But the most important problem is the
large amount of time required to finish this kind of work of
art. Only a small error in the decision when placing the dots
or an error choosing the proper colours can easily derive into
a fatal error that implies to discard all the work.

This kind of illustrations are interesting but they are very
hard to be produced. If artists could use this technique
efficiently, they would produce images of great beauty main-
taining the details and the shade even with large dots. Our
intention is to provide a system to produce this kind of

Germán Arroyo is with the Department of Lenguajes y Sistemas In-
formáticos, University of Granada, C/ Periodista Daniel Saucedo Aranda,
Spain (phone: +34 958 244 344; email: arroyo@ugr.es).

Domingo Martı́n is with the Department of Lenguajes y Sistemas In-
formáticos, University of Granada, C/ Periodista Daniel Saucedo Aranda,
Spain (phone: +34 958 244 344; email: dmartin@ugr.es).

M. Victoria Luzón is with the Department of Lenguajes y Sistemas
Informáticos, University of Granada, C/ Periodista Daniel Saucedo Aranda,
Spain (phone: +34 958 244 344; email: luzon@ugr.es).

illustrations automatically using a computer taking as input a
photograph or an image inferring the knowledge of the artist.

There are various previous works about stippling[1], [2]
but they use only one ink and do not simulate felt-tip pens.
In this paper we present a new algorithm that uses the
information of the contrast, the borders and the histogram
to define a set of cells with a certain probability. This
probability is modified by an expert system that uses rules
obtained from artists with different experience. The algorithm
uses this probability to render the dots in several iterations,
which add details progressively. The algorithm detects when
the illustration has finished, stopping automatically.

II. PREVIOUS WORKS

Abstract representation of still images was introduced by
Haeberli[3] using image colour gradient and user interactiv-
ity for painting. Hertzmann[4] places curved brush strokes
of multiple sizes on images for painterly rendering. The
technique fills colour by using big strokes in the middle of
a region and uses progressively smaller strokes as one ap-
proaches the edges of the region. Shiraishi and Yamaguchi[5]
improves the performance of above method by approximating
the continuous strokes by placement of rectangular strokes
discreetly along the edges to create painterly appearance.
Santella and DeCarlo[6] uses eye tracking data to get points
of focus on images and create painterly rendering with focus
information. There are good works for painting terrains[7],
[8], but they do not work with general models. All these
techniques work well on single images but do not simulate
colour stippling.

Most of the related research on stippling is focused on
generating dots according to the shading of a photograph,
paying almost no attention to the shape of dots or the
techniques that artists use[9]. Some methods propose using
circles instead of realistic dots[2], [10], [11], [12], [13],
[14]. This differs noticeably from the illustrations created by
artists because natural dots have a gradient. Other methods
focus on distributing the dots correctly along a surface
according to the shading[15], [16], [17]. In these cases, the
use of Central Voronoy diagrams produce easily recognisable
patterns. Renderbots is based on automatons but the results,
when they simulate stippling, have the same problems with
patterns too[18] and it is not able to produce handmade
similar results. None of them uses coloured dots because
it is a less usual technique.

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

III. OVERVIEW

First, we will discuss the proposed system. It is based
on the scheme presented in Figure 1. As we can see, the
algorithm has the following steps:

1: The information is obtained from the input image.
2: This information is the input of the expert system.
3: The expert system returns some confidences for three

parameters.
4: A matrix with probability is generated from this param-

eters.
5: The algorithm enters in a loop:
6: loop
7: The new place and size of the dot is computed.
8: A new dot is composed with a simplified colour of

the region.
9: The dot is blended with the output image.

10: end loop
This algorithm finishes when the stop condition is reached.

A discrete function of probability will guide all the process
to place the dots, in such a way that the order of the dots
placement is determined by a matrix of probabilities.

Once the matrix has been generated, the algorithm for dots
placement searches a local maximum in the matrix by using
a stochastical algorithm. If the local maximum is not 0, a
dot is placed there. In other case, it searches again until a
number of iterations is reached, and then the algorithm stops.

Once the dot has been placed, the matrix will be updated to
remove a certain amount of probability, then the probability
of that place is chosen again decreasing each time a dot is
placed there.

In the next sections, a more detailed description of the
algorithms is presented.

IV. EXTRACTION OF KNOWLEDGE

In order to extract some knowledge from the image an
analysis of the image and an algorithm to process this
knowledge are needed. The filtering process is based on
what artists do before they draw a stipple illustration. The
process may vary from artist to artist, but in general, they
begin marking silhouettes and stippling them. The next step
is to stipple on the darkest areas of the image. It is also
important to stipple in areas where details can be enhanced
and where there are different or relevant elements of the
photograph. The background is usually irrelevant, so, the
most repeated tone in the photograph is ignored by the artist.
Colour stippling is not an exception to this rule.

Therefore, the algorithm to extract all this information is
the following:

1: Let be Ic the contrasted image.
2: Let be H the histogram of the image.
3: Let be Ib the magnitude of the borders of the image.
The problem is that artists usually attach different impor-

tance to this information according to the kind of illustration
to draw, hence this knowledge is not enough to build the
rules that our expert system needs.

Due to the fact that images are very general and complex,
we have defined a set of properties from the image to
construct an expert system that guides the stippling process:
• The amount of contrast of the image (CTR).
• The saturation of the image (SAT).
• The brightness of the image (BRT).
• The complexity of the image (based on the amount of

borders) (CMPL).
• If the image has plain background / or if the image

has a complex background (based on the histogram)
(PLAINBG).

• The number of different tones in the image (TONES).
These properties are integrated in a new structure. This

new structure will be called Ps. This structure is used to
define the values of an image and used to form the rules of
the expert system.

A rule in our system is defined as:

IF <Condition> THEN <Goal>

In the conditions, the values of the structure Ps are
compared in order to trigger a rule, whereas the goals
describe operations or results. These operations alter the
input image feed-backing the algorithm and improving the
solution. These operations are defined as follows:
• Change contrast (CHCTR): changes the contrast of the

image
• Change brightness (CHBR): changes the brightness of

the image
• Enhance image (ENH): enhances the image by using

the border information
• Change saturation (CHST): changes the saturation of the

image
The result of the expert system is three parameters that

affect the way the matrix of probabilities is setting. These
parameters are:
• α: a value that represents how much the contrast of the

input image affects the result
• β: a value that represents how much the borders of the

input image affects the result
• γ: a value that represents how much the histogram

affects the result
With all this information we have designed a set of

tests that have been provided to different artists. We have
determined a set of simple rules based on what these artists
answered. The results of these tests were different according
to the degrees of expertise of the artist, so most of the rules
of our system were acquired from the most expertise tests.
These rules make up the Subject Matter Expert’s knowledge
base (rulebase).

So, an example rule of our system would be:

IF [Brightness>0.5 AND Contrast<0.2]
THEN [CHCTR(+0.1), BETA = BETA + 0.1

Our inference engine is a modified version of
BaseVISor[19] to treat with images. This inference
engine processes all the chained rules and returns an output

Input Image

Borders

 Image

Contrasted

 Image

Histogram

Probabilistic

Function

Function to

Place Dots

Function to

Compose

Coloured

Dots

Loop

Rules of

Artist Expert

System

Colour values

O
bt

ai
n

pa
ra

m
et

er
s

,
,

feedback I ,I ,Hb c

Ps

I b

I c

H

I ,I ,H

b
c

M

Fig. 1. An overview of the algorithm.

to the system that will be a tuple with tree values: (α,β,γ).
This tuple will be the input of the next step of the algorithm
to create a matrix with the probabilities.

The matrix of probabilities (M) is a structure that stores,
not only probabilities, but also the size of the dot for every
position. This matrix has the same size that the previous
images.

To generate this matrix, the following algorithm is com-
puted:

1: for x = 0 to Width(Ic) do
2: for y = 0 to Height(Ic) do
3: M[x,y]� α∗ Ic[x,y]+β∗ Ib[x,y]+ γ∗H[x,y]
4: end for
5: end for
Where α, β and γ are the obtained parameters from the

expert system.
All the values of the matrix can be normalized easily.

The size of the dot can be stored in the matrix in a similar
way using the information obtained with these parameters,
as shows the next algorithm:

1: for x = 0 to Width(Ic) do
2: for y = 0 to Height(Ic) do
3: M[x,y] size←−− α∗ Ic[x,y]∗d pi
4: end for
5: end for
Where d pi is a variable that adjusts the size of the

illustration for printing. Once the matrix has been generated,
the next step is iterate until all the dots have been placed.

V. ALGORITHM FOR POSITIONING THE DOTS

The algorithm for dots placement removes the patterns in
the final image. We use a method that is based on a Rejection
Sampling algorithm but guided by the matrix of probabilities
M.

The algorithm we propose has the following steps for each
dot to be placed:

1: iteration � 0
2: maxp � 0
3: while maxp = 0 and iteration < N IT ERS do
4: for i = 0 to i < N T EST S do
5: x � Random(0,Width−1)
6: y � Random(0,Height−1)
7: p � M[x,y]
8: if p is a new maximum then
9: maxp � p

10: s size←−−M[x,y]
11: end if
12: end for
13: iteration � iteration+1
14: end while
15: if maxp = 0 then
16: End of algorithm
17: end if
18: Generate a dot of size s
19: Blend the dot with the final image
20: Update the matrix M

The algorithm takes as input two parameters: N ITERS
and N TESTS, and the size of the matrix given by
(Width,Height). N ITERS indicates the maximal number
of iterations of the algorithm before deciding that there are
no more places to stippling. N TEST indicates the maximal
number of times to search for a higher probability. A pre-
set for N ITERS = 1.000 and N TESTS = 10.000 produces
good results; these values has been empirically obtained.

The inner loop of the algorithm searches for a local
maximum whereas the outer loop skip to another area to
search the probability. An iteration of the general algorithm
(from line 4 to 13 in the previous algorithm) is shown in

Figure 2. In a first step a series of candidates is randomly
generated after a local and a global search. From all these
candidates the hightest value is taken. In a second step, a
dot is computed and placed in the position given by the best
candidate. Finally, in the third step, the probability of the
best candidate is decreased in the matrix of probabilities.

1 2 6 7 1 6 9 6 3 4 6 1

1 2 6 2 1 6 3 6 3 4 6 1

2 2 5 7 2 6 2 6 3 1 5 3

1 2 6 7 1 6 9 6 3 4 6 1

2 2 5 7 2 6 2 6 3 1 5 3

Maximum

value:

7

STEP 1:

1 2 6 7 1 6 9 6 3 4 6 1

1 2 6 2 1 6 3 6 3 4 6 1

2 2 5 7 2 6 2 6 3 1 5 3

1 2 6 7 1 6 9 6 3 4 6 1

2 2 5 7 2 6 2 6 3 1 5 3

STEP 2:

1 2 6 7 1 6 9 6 3 4 6 1

1 2 6 2 1 6 3 6 3 4 6 1

2 2 5 7 2 6 2 6 3 1 5 3

1 2 6 6 1 6 9 6 3 4 6 1

2 2 5 7 2 6 2 6 3 1 5 3

STEP 3:

maxp

place the

dot

decrease

probability

Fig. 2. The general algorithm for an iteration when placing dots.

maxp indicates the maximal probability found, whereas
iteration indicates the number of iterations before the algo-
rithm decides a local maximum is found.

As we can appreciate, the algorithm would never finish
if the values of M do not change. This is the reason for
the matrix must be updated. When a dot is placed over
the final image, a value is subtracted from matrix M. This
value depends of the intensity of the placed dots, therefore
dots in the middle subtract a higher value than outer cells.
Additionaly, some amount is substracted to neighbour cells
of the pixel as shown in Figure 3. The radious of the affected
neighbourhood is determined by the contrast in the cell. This
value can be adjusted depending on the distance from the
centre of the dot. This substraction prevents too many dots
overlap in the same area of the image. The values of this
substraction can be easily adjusted empirically.

VI. COMPOSING THE COLOUR DOTS

Felt-tipped stippling dots have usually a known size,
therefore there is no problem if they are obtained by scanning

OUTPUT

IMAGE

OUTPUT

IMAGE

MATRIX

a)

b)

Fig. 3. a) The dot is placed on the output image, and the matrix is updated
(in white); b) The neighbour cells are also updated (in red).

a real set of them. Therefore our algorithm reads the dots
from a scanned database. This database stores the dots as
grayscale independent images. We have used a set of 300
scanned dots with different sizes and resolutions for our
database.

When the algorithm decides the position of the dot, its
colour is computed by looking at the original image and
using the following formula:

Colour f inalDot = Colourimage ·GrayValuedatabaseDot (1)

This formula modifies the intensity of the dot according to
the shape of the scanned dot. The alpha value of the image
is taken directly from the values of the dot in the database.
Colour f inalDot is the final colour of the pixel in the dot to be
placed. Colourimage is the colour of the pixel in the original
image, and GrayValuedatabaseDot is the value of gray of the
pixel in the scanned dot.

The dots can be composed in the output image using the
following formula for every pixel of the dot:

Cd = (1−A) ·Cd +(A) ·Cs (2)

Where Cd is the colour destiny, Cs is the colour source,
and A is the value of the intensity of the dot.

In colour stippling the problem of having only one ink
when printing is solved due to the technical capacities of
the modern printers, specially if a dye-sublimation printer is
used to print the illustration. With this kind of printers the
colours use heat to transfer dye onto the paper. The advantage
of dye-sublimation printing is the fact that it produces a
continuous-tone, where each dot can be any colour. However,
today’s inkjet printers also produce extremely high quality
printings. The reason is that they uses microscopic droplets
and supplementary ink colours, producing sometimes even
superior colour fidelity to dye-sublimation.

VII. RESULTS

The system is able to generate automatic stippling without
user intervention. We have developed and tested them in a
software made in C++, the inference engine works as a plugin
of the program as a script in Java. These algorithms produces
a stippling illustration with felt-tip pens that degrade the
colours in an aesthetic way, as shown Figure 4 and Figure
5. The algorithm for dots placement and generation of dots
are stable even with complex images as shown in Figure 6,
this figure is prepared for printing. The expert system is able
to adjust the contrast, the saturation or the brightness of the
input image to avoid that plain areas of the image produces
noise, hence the result is better in colour and regularity, as
shown in Figure 7. It can be appreciated (Figure 8) how
differents executions of the algorithms does not produce the
same result due to the randomness of the method, although
the method is stable and the representation of the figure is
the same for the eye.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm to automatically draw
coloured illustrations and simulates felt-tip stippling. We
have introduced an expert system that automatic controls how
the algorithms place the dots. We have developed a fast and
direct equilibration technique that is based on a probabilistic
model. Our system provides a high-quality output with no
interaction of the user.

Future research is proposed into how more artistic knowl-
edge can be included automatically within the application. It
would also be interesting to be able to generate resolution
independent illustrations.

ACKNOWLEDGMENT

Thanks to Vicente Villamón for the photograph of the
Figure 4, thanks to Eustaquio Santimano for the photograph
of the Figure 6, thanks to Seattle Miles for the photograph of
the Figure 5, thanks to Keven Law 8, thanks to Elena Piñar
for the illustration of the Figure 7. We have the permission
of all the authors to display all the pictures and images.

REFERENCES

[1] R. Maciejewski, T. Isenberg, W. M. Andrews, D. S. Ebert, and M. C.
Sousa, “Aesthetics of hand-drawn vs. computer-generated stippling,”
in Proceedings of Computational Aesthetics in Graphics, no. 3, 2007,
p. unknown.

[2] D. Mould, “Stipple placement using distance in a weighted graph,” in
Proceedings of Computational Aesthetics in Graphics, no. 3, 2007, p.
unknown.

[3] P. Haeberly, “Paint by numbers: abstract image representations,” in
SIGGRAPH’90: Proceedings of the 17th annual conference on Com-
puter graphics and interactive techniques, 1990, pp. 207–214.

[4] A. Hertzmann, “Painterly rendering with curved brush strokes of
multiple sizes,” in Computer Graphics (Annual Conferences), no. 32,
1998, pp. 453–460.

[5] M. Shiraishi and Y. Yamaguchi, “An algorithm for automatic painterly
rendering based on local source image approximation,” in NPAR 00:
Proceedings of the 1st international symposium on Non-photorealistic
animation and rendering, 2000, pp. 53–58.

[6] A. Santella and D. DeCarlo, “Abstracted painterly renderings using
eye-tracking data,” in NPAR 02: Proceedings of the 2nd symposium
on Non-photorealistic animation and rendering, 2002, pp. 53–58.

[7] L. Coconu, O. Deussen, and H. C. Hege, “Real-time pen-and-ink
illustration of landscapes,” in NPAR 06: Proceedings of the 2nd
symposium on Non-photorealistic animation and rendering, 2006, pp.
27–36.

[8] S. Bhattacharjee and P. J. Narayanan, “Real-time painterly rendering
of terrains,” in Proceedings of Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, 2008.

[9] A. Secord, W. Heidrich, and L. Streit, “Fast primitive distribution
for illustration,” in Thirteenth Eurographics Workshop on Rendering,
2002, pp. 215–226.

[10] B. Gooch and A. Gooch, Non-photorealistic Rendering. A. K. Peters,
July 2001.

[11] X. Yuan, M. X. Nguyen, N. Zhang, and B. Chen, “Stippling and
silhouettes rendering in geometry-image space,” in Proceedings of
Eurographics Symposium on Rendering, pp. 193–200.

[12] A. Lu, C. Morris, J. Taylor, D. Ebert, P. Rheingans, C. Hansen,
and M. Hartner, “Illustrative interactive stipple rendering,” in IEEE
Transactions on Visualization and Computer Graphics, vol. 9, no. 2,
2003, pp. 127–138.

[13] T. Isenberg, P. Neumann, S. Carpendale, M. C. Sousa, and J. A.
Jorge, “Non-photorealistic rendering in context: An observational
study,” Proceedings of the Fourth International Symposium on Non-
Photorealistic Animation and Rendering, NPAR 2006, pp. 115–126,
June 2006.

[14] S. Kim, R. Maciejewski, T. Isenberg, W. M. Andrews, W. Chen, M. C.
Sousa, , and D. S. Ebert, “Stippling by example,” Proceedings of
the Seventh International Symposium on Non-Photorealistic Animation
and Rendering; NPAR 2009, pp. 41–40, August 2009.

[15] A. Secord, “Weighted voronoi stippling,” in Proceedings of NPAR.
ACM Press, 2002, pp. 37–43.

[16] O. M. Pastor, B. Freudenberg, and T. Strohthotte, “Real-time animated
stippling,” in Proceedings of NPAR 2004, vol. 23, no. 4, 2004, pp. 62–
68.

[17] D. Kim, M. Son, Y. Lee, H. Kang, and S. Lee, “Feature-guided image
stippling,” Computer Graphics Forum, vol. 27, no. 4, pp. 1209–1216,
2008.

[18] S. Schlechtweg, T. Germer, and T. Strothotte, “Renderbots: Multi agent
systems for direct image generation,” Computer Graphics Forum,
vol. 24, pp. 283–290, 2005.

[19] C. Matheus, M. Kokar, and R. Dionne, “A demonstration of formal
policy reasoning using an extended version of basevisor,” in Proceed-
ings of the IEEE Workshop on Policies for Distributed Systems and
Networks, POLICY 2008, June 2008.

Fig. 4. The result of our algorithm.

Fig. 5. The algorithm works better with colourful images.

Fig. 6. The algorithm is stable even with complex images. This image is scaled to 1:1 and ready to be printed.

Fig. 7. The coeficients α, β and γ has been adjusted by hand on the top image; the image on the bottom has been generated enabling the expert system.
An augmented part of the illustrations is shown on the right.

Fig. 8. These images are the result of different executions of the algorithm. As we can see the result is almost identical.

