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. Introduction

Documentation of cultural heritage artefacts is one of the most
mportant tasks in terms of understanding and preserving tangible
eritage. This process usually involves handling huge sets of het-
rogeneous data: photographs, illustrations, recordings, logbooks,
lans, diaries, databases, digitized 3D models, etc. In traditional

nformation systems, these data are usually stored in the absence
f any kind of cross-referencing between the 3D model and the
atabase.

The development of 3D scanning technologies over the last
ecade has allowed us to capture highly accurate representations of
ultural heritage artefacts. Following the application of the proper
rocessing techniques, the resulting 3D models possess sufficient
eometric detail for them to be useful in terms of taking measure-
ents and performing geometric operations.
The geometric information offered by these digitized 3D models

s connected with every other type of meaningful data used to docu-
ent artefacts. After all, pictures are taken to accurately document

pecific areas, illustrations are drawn to emphasize finer details,
ogbooks are used to register the work done in different sections at

pecific times, etc. It thus seems natural to organize and store this
nformation on the surface of the 3D models.

� The article is part of a special issue entitled/XXX, edited by XXX.
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2. Research aim

This article presents a new architecture for cultural heritage
information systems that borrows from the foundations and func-
tionality of Geographic Information Systems (GISs) and applies
them to 3D models. Our solution organizes the information in the-
matic layers that are mapped onto the surface of the 3D model
(Fig. 1). The data of these layers is stored on 2D textures and tex-
ture coordinates are used to properly index that information. This
new approach takes advantage of the parallelism and efficiency of
the Graphics Processing Units (GPUs) to handle and operate these
structures. Our approach also allows to associate information inde-
pendently of the geometry of the 3D model.

3. Previous works

In this section, we classify previous works related to informa-
tion systems into four categories according to the dimension of the
space employed in the analysis and visualization of data.

3.1. 2D space

These methods represent the information by means of 2D
structures and employ existing GISs with minor modifications to

document tangible heritage. This choice provides a vast range of
solid tools with powerful analytic and information retrieval capa-
bilities. However, these methods lack a bidirectional connection
between the stored information in a 2D plane and the digitized 3D
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ig. 1. Prototype of the proposed architecture. The user has associated two inform
racks  using a green color. The second layer pieces identifies the different pieces of 

ource model. It is, therefore, necessary to process this 3D model
efore using it as a valid input in these systems.

Naglič [1] and Ioannidis et al. [2] are good examples of this
pproach. They both use GISs for their work on large-scale archae-
logical sites, as these systems allow them to index large areas by
eographical coordinates. Likewise, Parkinson et al. [3] employ GISs
o study tooth marking patterns created by large contemporary
anids on the bones of their preys and compare them with earlier
ossils. They photograph the bones and manually create vector lay-
rs of the markings. In each of these cases they have to compromise
he 3D nature of the source material in order to use GISs to analyse
he data, limiting their entire work-flow to just one point-of-view
t a time.

.2. 2.5D space

These methods work with images and GISs to analyse and pro-
ess the data. In contrast to the 2D approaches, the images are
asterized elevation models that contain height information. There-
ore, they work in the restricted 3D space that this type of images
rovides. It is a more flexible and powerful method but, at the same
ime, it shares the issues of the 2D approaches. They need to con-
ert the digitized 3D models into the appropriate image format and
hey are restricted to only one point-of-view.

Benito et al. [4] use this approach to classify stone tools
mployed by wild chimpanzees. They divide this classification
n several stages: first they scan the tools, then they transform
he resulting 3d models into digital elevation models and finally,
hey use morphometric GIS classification functions to discriminate
etween active and passive pounders in lithic assemblages.

.3. Hybrid space

The methods under this category work in a 2D space during the
tages of analysis and data processing and then visualize the result-
ng information in a 3D space. Two different transformation steps
re required for this process. First, they need to project the initial 3D
odel, used as geometric reference, onto different 2D planes. The

esulting images or digital elevation models are later processed in a
IS. Once this process has finished, the output needs to be projected

nto the 3D model again as a texture. Although these methods lack
he point-of-view restrictions of those described above, their work-
ow is more complex and it suited only to tangible heritage easily
ivisible in 2D planes.
 layers to the 3D model of a vessel. The first layer cracks identifies the area of the
attered vessel using the selected palette.

Campanaro et al. [5] used this approach to tackle the preserva-
tion of architectonic structures. They project the faç ade of buildings
into multiple images, process them in different GISs and finally,
they project the results onto a simplified version of the original 3D
models of the buildings for their visualization.

3.4. 3D space

Unlike the previous approaches, these methods work directly
with the digitized 3D models. There are no point-of-view restric-
tions and no transformations between different workspaces.

3.4.1. Annotation systems
The main goal of these systems is to associate information on

specific sections of the 3D model surface and offer robust infor-
mation retrieval tools. There is a wide spectrum of indexation
mechanisms under this paradigm, ranging from submeshes of the
original 3D model to lines or points in 3D space.

Durand et al. [6], Meyer et al. [7] and Mateos et al. [8] propose
several online information systems to document archaeological
sites. These systems require that the original 3D model is seg-
mented into smaller and distinct entities. The analysis, processing
and dissemination of information are done for each entity instead
of the complete model.

Giunta et al. [9] use AutoCAD models to structure the archi-
tectural information and diagnostic investigation results of Milan’s
Cathedral Faç ade. Additionally, the system allows the user to insert
pictures, texts and documents in a geo-referenced way.

Serna et al. [10] describe a distributed information system to
annotate multimedia objects (3D models, images, text) using the
concept of areas. Apollonio et al. [11] develop a web information
system to document the restoration project of Neptune’s Foun-
tain in Bologne, Italy. The system allows the user to annotate the
3D model using three different primitives (points, polylines and
areas) and to gather the stored data by means of robust information
retrieval tools.

3.4.2. Layer based systems
These systems structure information attached to 3D models as

a set of layers, where each layer stores the value of one attribute.
Data layers can be considered as functions that associate a property

value to points on the surface of the object. This type of systems can
include the same functionality as the annotation systems and they
can also perform complex operations between data layers. How-
ever, the main problem that these systems need to solve is how
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o design efficient structures and methods to represent those data
ayers.

Torres et al. [12] divide the surface of the original 3D model into
ells by means of an octree. Specifically, surfaces are recursively
ubdivided by eight cubic cells or voxels of the same size up to a
redefined resolution level. Hence, each cell stores the triangles of
he mesh that intersects. The level of detail depends on the size
f these voxels and therefore, the number of subdivisions (levels)
pplied. The octree structure allows the user to work independently
f the geometric irregularities and resolution. This way, fairly sim-
le meshes are able to store information with better accuracy than
he geometric mesh is able to offer. However, this spatial indexation
ecomes expensive in terms of memory and performance when
ealing with the highest resolution levels.

The information layers are stored as sequences of properties
ssigned to the leaf nodes crossed by the surface [13,14]. This sys-
em not only is able to annotate or look up information, but it
lso allows the user to make complex computations with hetero-
eneous layers. Some of these computations include arithmetic,
ogic, geometric and topological operations or database queries,

hich can be used to analyze already existing data or to produce
ew information. Soler et al. [15] improve this system in order to
olve specific topological problems at the expense of using a more
omplex data structure.

In this article we propose a new solution for these layer based
ystems that works in the 3D space and uses information layers
o organize the information annotated on the 3D model. Unlike
he Torres et al. [12] approach that requires an octree, our solution
akes advantage of the modern GPU hardware by means of using
extures and texture coordinates for data storage and indexation of
he information. Our layers always reside in the memory of the GPU
rovided that there is memory available and all the operations are
omputed in the GPU. Consequently, the data-transfers between
PU and GPU are nonexistent and the editing of the layers is really
fficient. For instance, the size of the edited area does not affect the
erformance. Moreover, the required time for the creation of these
tructures is insignificant in comparison to octrees and the size of
ur meshes is also independent of the layer resolution.

Next section describes in detail all the aspects of the data struc-
ures and algorithms required to create the proposed architecture.

. Proposed approach

This section offers a comprehensive look at our proposed archi-
ecture. Section 4.1 introduces the concept of using textures to store
ata other than colours. Section 4.2 describes the layers and the rest
f the structures. Finally, Section 4.3 details the algorithms required
o edit the layers.
Ideally, whenever possible, structures and algorithms should
e written with the strengths of the GPUs in mind to minimize
he involvement of the CPU. Our architecture (Fig. 2) follows this
rinciple and it defines all the structures directly in the memory

Fig. 2. General overview of the proposed architecture.
eritage 41 (2020) 142–151

of the GPU. Moreover, all the algorithms are solved in the GPU as
well, so the CPU only has a management role. Layer manager han-
dles the loading, storage and creation of layers. Texture manager
is part of layer manager and issues commands to the GPU to cre-
ate or destroy these structures but it does not store any of their
information. Geometry manager handles the loading and storage of
geometry files and uploads the geometry data efficiently to the GPU.
Database manager resolves the creation and update of tables, tuples
and queries. The disk drive is only used to load and store layers,
databases and geometry permanently. Finally, the editing process
requires a graphical user interface, therefore we have implemented
a prototype (Fig. 1) based in our architecture.

4.1. Texture as a heterogeneous data structure

Textures are usually defined as containers of one or multiple
images in computer graphics. These images are arrays of texels of a
certain dimensionality (1D, 2D or 3D) and they store the informa-
tion following a specific format. Traditionally, textures have been
widely used to add color information to the surface of 3D models.
However, the birth of the programmable graphics and GPU com-
puting pipelines have dramatically expanded their use during the
last two  decades.

Therefore, textures are multi-purpose structures nowadays. In
fields like General Purpose GPU (GPGPU) computing, textures are
usually treated as simple arrays or computation matrices. How-
ever, in Computer Graphics, it is a de facto standard to work with 3D
models and textures coordinates, which are necessary to access and
store the information. These coordinates are the result of project-
ing every primitive of the mesh, such as triangles, onto the texture
space, which is usually a 2D space.

Since our information system works with 3D models, we  use
texture coordinates to index the data stored in 2D textures. This
data is represented as integers or floating numbers of a certain size
based on the type of the information layers.

4.2. Information layer

Our system handles two types of information layers:

• numeric layers store numeric properties such as curvature, rugos-
ity, age and so on. The properties can be integer or real values.
These layers are normally employed for annotating and operating
with quantitative information;

• database layers have a relational database table associated.
Regardless of how the user defines the table schema, the pri-
mary keys are always unsigned integers and they are also the
values stored in the layer. Therefore, these layers establish a bidi-
rectional relationship between the table of a database and the
geometry of the 3D model. The use of tables is an elegant solu-
tion that allows the storage of complex heterogeneous data (text,
dates, documents, pictures) and greatly enhances the semantic
information of the 3D models. These layers are used for annotat-
ing and operating with qualitative information.

Fig. 2 depicts how layers are implemented in our system. Specif-
ically, information layers consist of two  different 2D textures and
one 1D texture:

• Data Texture (2D) stores a number per texel. These numbers are

integers (8, 16 or 32 bits) or float (16 or 32 bits) values. This
texture holds the actual information of the layer, meaning prop-
erty values in case of numeric layers, or primary keys in case of
database layers;
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Mask Texture (2D) stores a boolean value per texel to determinate
whether the texel of the Data Texture contains valid information
or not;
Palette Texture (1D) stores the necessary color information per
texel to visualize the contents of the Data Texture. Each texel
holds a four-component vector with the following color format:
red, green, blue and alpha.

This wide range of texture options presents a challenge when the
ystem needs to handle numerous instances of each option simulta-
eously. Our texture manager accomplishes this task using texture
rrays [16] and sparse [17,18] bindless textures [19].

Traditionally GPUs can only use simultaneously as many tex-
ures as the number of texture image units they have available per
hader stage. For instance, in modern NVIDIA graphics cards, frag-
ent shaders can only access up to 32 different textures. To bypass

his limit, our texture manager implements bindless textures. This
eature allows our system to access textures in shaders by means of

 handle without having to bind each texture to one texture image
nit.

When there are many instances of the same type of textures, it
s not efficient to use one handle for each texture because they can
e grouped in categories. To make this possible, our texture man-
ger classifies the textures using a hash function at the time of their
reation. The hash key is constructed by joining their width, height
nd data type in a unique field. This way, the manager can group
ultiple textures that share similar features and use texture arrays

o store them. These structures have multiples levels and each level
tores a texture. At the same time, they only need one texture han-
le. Therefore, they are very useful for grouping textures. Whenever

 new texture is required, the texture manager computes its hash
ey. If the key does not exist, the manager issues the creation of

 new texture array to the GPU, stores the texture array identifier
nd assigns the texture to its first level. On the contrary, if the key
lready exists, the new texture can be part of an existing texture
rray and occupies the next available level.

Creating multiple textures arrays with a high number of levels
an rapidly fill up the memory of the GPU. Even if we only need a
mall amount of textures per texture array, the graphic driver has to
llocate all the space at the time of creation. Decreasing the number
f textures per texture array does not solve the problem because
here is still allocated memory that is not currently in use. Here is
here sparse or partially resident textures offer an excellent solu-

ion. They allow the texture manager to allocate virtual memory
pace for texture arrays without wasting any physical memory until
t is specifically requested. Only when the manager needs new tex-
ures, this virtual memory is committed and allocated into physical

emory.
Memory management is, therefore, simpler and more flexible.

here is no physical memory wasted. More texture arrays with a
igher number of levels can be created, hence more instances of dif-

erent types of layers can exist simultaneously. Sparse textures also
mprove the performance due to there is no data-transfer between
PU and GPU until the physical memory of the GPU is almost fully
ccupied. This offers another advantage: the textures always reside
n the memory of the GPU, with the exception of two cases. In the
rst case, the user wants to save the layer to the hard disk and the
hree textures of the layer (Data, Mask and Palette) are transferred
etween GPU and CPU. In the second case, there is no enough space

n the GPU memory to store a new layer and the graphic driver
ransfers unused textures to CPU memory to make room for the
ew ones.
Our solution results in an efficient approach due to GPUs excel
t working with textures and textures coordinates. Modern GPU
rchitectures have specialized hardware in the form of texture
aches and texture mapping units that optimize the operations
eritage 41 (2020) 142–151 145

with these structures [20–22]. The cache exploits the spatial and
temporal locality in accesses to reach high hit rates and the tex-
ture data is available to the shader processor with high throughput
and low read latencies. Another advantage of this approach it is the
independence between data and geometry in our model. Therefore,
high resolution textures can be used to store information with a
high level of detail on simple models.

Since these 2D textures do not store colour information but
rather heterogeneous data, our system uses palettes that transform
values into colours in order to render the layers. Our solution con-
sists of a 1D texture that stores the colour information of the palette
defined as a sequence of control points. Using the numeric value of
the information layer per texel, another structure that contains the
lower and upper limits of the palette and a single linear transforma-
tion, we can properly index the 1D texture and retrieve the correct
colour to display.

4.3. Editing layers on the 3D model

Regarding to the user interface, once the editing mode is acti-
vated, an editing tool in the shape of a circle appears under the
mouse cursor. The user can interactively add information to the
selected layer by pressing the left button of the mouse and mov-
ing the tool over the desired area. This is a complex process that
involves two  distinct algorithms:

• Texture Editing Algorithm (TEA), detailed in Section 4.3.1, trans-
lates the user inputs into valid texture coordinates and it stores
the new values in the appropriate texels of the layer textures;

• Texture Padding Algorithm (TPA), described in Section 4.3.2,
eliminates the visual artefacts that could appear when the appli-
cation renders the layer on the surface of the 3D model.

4.3.1. Texture Editing Algorithm
TEA is a multi-step algorithm that projects the area of the editing

tool, expressed in window coordinates, onto the space of the tex-
ture coordinates and stores the selected value on the appropriate
textures permanently. Fig. 3 depicts a diagram of the whole pro-
cess, which progressively discards regions of the texture until the
edited area matches the orange shape of the editing tool. The inputs
of each step are displayed on the left side. The 3D views with the
results, on the right side. The center shows how the texture of the
layer evolves through the different steps.

This algorithm requires two  input textures in addition to other
3D model attributes, such as vertices, normals and texture coordi-
nates and the information relative to the camera:

• Depth Texture is created as a part of the system pipeline. This
texture stores the depth values of the scene from the current
point-of-view. The user triggers an update when she modifies
the viewpoint of the active camera or loads a new 3D model into
the system;

• Editing Tool Shape Texture is created as a part of the system
pipeline. This texture stores the shape of the current editing tool.
The user triggers an update when she selects another shape for
the editing tool.

Since the goal of the algorithm is the editing of textures, an off-
screen framebuffer is set up and three textures are attached to it:
the 2D textures of the layer, Data and Mask, and a temporal mask,

Edited Area Mask. Each editing operation updates them as follows:

• Data Texture is updated with the value selected for the editing
operation in the area marked by the user;
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Fig. 3. Our algorithm filters areas of the texture progressively. (a) Depth and Ori-
entation Test discards the occluded and back-facing parts of the 3D model; (b) Tool
Area projection projects a squared area of the appropriated size onto the remaining
a
t

•

•

(

Depth Texture sampled by the coordinates (s/w, t/w) using a
rea. Finally, (c) Shape Masking discards the texels that fall outside of the editing
ool shape.

Mask Texture is updated with the value true in the area marked
by the user;

Edited Area Mask is also updated with the value true but the sys-
tem cleans it after each operation. Hence this is a mask of the area
updated by the current editing operation.
eritage 41 (2020) 142–151

The scene is rendered from the viewpoint of an orthogonal
camera using the texture coordinates of the 3D model as vertex
positions. That way, the mesh parametrization is rendered on a 2D
plane or texture space. Fig. 3 shows the mesh parametrization of
an u-shaped 3D model at the top of the central column. The black
lines represent the 2D triangles created by the texture coordinates
and the blue color, the actual rendered area in the texture.

TEA makes extensive use of projective texture mapping [23,24].
This technique assumes that textures are projected onto the scene
by slide projectors. It is a similar procedure to projecting the scene
to the screen but, in this case, the scene is projected to the slide
projector. Specifically, the vertices of the 3D model are transformed
using the modelview and projection matrices of the slide projec-
tor. This transformation maps the homogeneous coordinates of the
vertices to clip coordinates:
⎡
⎢⎢⎢⎢⎣

Xclip

yclip

Zclip

Wclip

⎤
⎥⎥⎥⎥⎦

= Mprojection • Mviewing •

⎡
⎢⎢⎢⎢⎣

Xobj

Yobj

Zobj

Wobj

⎤
⎥⎥⎥⎥⎦

where (xobj, yobj, zobj, wobj) and (xclip, yclip, zclip, wclip) are the
vertex and clip coordinates, Mprojection and Mviewing are the pro-
jection and modelview matrices. An additional scale and bias
transformation is applied to translate the domain of clip coordi-
nates [-1,1] to the domain of texture mapping [0,1]:
⎡
⎢⎢⎢⎢⎣

xprj

yprj

zprj

wprj

⎤
⎥⎥⎥⎥⎦

= Msb •

⎡
⎢⎢⎢⎢⎣

xclip

yclip

zclip

wclip

⎤
⎥⎥⎥⎥⎦

where (xclip, yclip, zclip, wclip) and (xprj, yprj, zprj, wprj) are the
clip and projective coordinates, Msb is the scale-bias matrix.

Unlike standard texture mapping that uses real texture coor-
dinates (s,t), projective texture mapping uses homogeneous
coordinates or coordinates in the projective space (s,t,w) where
s = xprj, t = yprj and w = wprj. These coordinates are interpolated
over the primitive and then at each fragment. The interpolated
homogeneous coordinates are projected to the real texture space
s/w (s/w, t/w) in order to access the texture image. The sampled
value is the output of the projective texture mapping for the frag-
ment.

Although TEA is actually solved in one single pass, we explain
the process in three different conceptual steps:

a) Depth and Orientation Test
It is undesirable that the system allows the user to edit the

occluded areas of the 3D models. Since the scene is rendered on
a 2D plane using the texture coordinates, TEA cannot use the
default depth buffer to apply the depth test. To solve this issue,
our algorithm makes use of the Depth Texture provided by the
system pipeline, which stores the depth values of the 3D scene
viewed from the active camera point-of-view.

The projector shares the same viewing and projection infor-
mation of the 3D scene camera. The vertex positions of the 3D
model are transformed and interpolated over the primitives
which are the triangles represented by the texture coordi-
nates. Therefore, each fragment has the depth value of the 3D
scene, zprj/wprj , and this depth is tested against the value of the
nearest-neighbor interpolation. A small bias is applied in this
computation to fight possible precision issues. If the depth of
the fragment falls behind the depth value of the texture, the
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Fig. 4. In the zoomed area, the algorithm has verified that the current texel is part of
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fragment is discarded. Otherwise, the rest of the algorithm pro-
ceeds normally.

The system also does not allow the user to edit back-facing
triangles. To test their orientation, our algorithm computes the
dot product between the camera vector and the mesh normals.
If the result is less than zero, the triangle is back-facing and the
fragment is discarded. Otherwise, the algorithm moves to the
next step.

Fig. 3a shows what sections of the mesh parametrization,
displayed in blue, are discarded after applying the depth and
orientation test. The discarded areas are shown in white.

b) Tool Area Projection
In this step the projector shares the same world position of

the 3D scene camera, hence its viewing transformation is also
identical. However, its projection transformation needs to be
adjusted to the texture frustum. If the projection transformation
were the same, the texture would be projected onto the whole
screen. Therefore, the projection has to be limited to the 2D
area occupied by the editing tool. The basic equation for 2D
coordinate transformation accomplishes that:

Tc = Tf + Sf • Sc

where Tc is the target coordinate, Tf is the translate factor, Sf is
the scale factor and Sc is the source coordinate. The scaling and
translate factors are computed with the following equations:

Sf =
(

Ww

2Tw
,

Wh

2Th

)

Tf =
(

Tpx-0.5 • Ww

Tw
,

Tpy- 0.5 • Wh

Th

)

where Sf and Tf are the scale and translate factor respectively,
Ww and Wh are the window size (width and height), Tw and
Th are the texture size (width and height), Tpx and Tpy are the
horizontal and vertical coordinates of the editing tool.

Fig. 3b shows the projection of the squared area containing
the shape of the editing tool on the texture space using the posi-
tion and size of the tool as inputs. The projection only takes place
on the coordinates not discarded by the previous tests, which
are the blue area of the texture. The green squared area is the
output of this step.

c) Shape Masking
At this point the coordinates need to be tested against the

texture that stores the shape of the tool. The Editing Tool Shape
texture is sampled using nearest-neighbor interpolation and
this simple masking operation discards those coordinates that
fall outside the shape. The final coordinates project the right
shape onto the 3D model and determine which areas of the
textures need to be updated.

Fig. 3c shows the masking operation using the editing tool
shape as an input. The output of this algorithm is the orange
rounded area and this step only takes place on the coordinates
validated by the previous projection, which are the green area
of the texture.

.3.2. Texture Padding Algorithm
While our TEA solves the editing of the data textures, the usage

f textures also entails some visualization artefacts. When GPUs
isplay textured 3D models, the texture coordinates define how

he texels are sampled and they are usually organized as sets of
sles of different size and shape along a 2D plane. The space of tex-
ure coordinates is continuous while the textures or images are
iscrete. This disparity makes the conversion between both spaces
the Outline Mask (black line) and the kernel (red matrix) is checking whether there
are  texels of the Edited Area Mask nearby (green shape). If so, it stores the value
selected for the editing operation on the textures (orange color).

prone to small inaccuracies around the edge of the isles. If there is
no redundant information beyond the borders of the texture isles,
visual discontinuities or artefacts can appear when these borders
are sampled. In order to prevent this rendering issue, our padding
algorithm expands the border data on some additional texels. The
general idea of the process is shown in Fig. 4, where the inputs
are displayed on the left side; the output, on the right side and the
zoom-in area depicts the padding in detail.

The algorithm requires two  input textures:

• Outline Mask. This texture contains the outlines of the texture
islands. It is created as a part of the system pipeline by a two-pass
algorithm. The first pass uses the texture coordinates to render
the mesh parametrization of 3D model into a 2D texture. The
second pass is a 2D image filter that use the output of the first
pass and checks whether each texel is at a distance of the islands
less than or equal to one texel. It is updated only when a new 3D
model is loaded into the system;

• Edited Area Mask. This texture contains the shape of the current
edited area. It is updated every time the user edits the layer.

Both textures are sampled using nearest-neighbor interpola-
tion.

This algorithm modifies the 2D textures of the layer edited in the
previous subsection: Data and Mask textures. An off-screen frame-
buffer is set up with these two  textures attached to it and each
padding operation updates them as follows:

• Data Texture is updated with the value selected for the editing
operation in the padded areas;

• Mask Texture is updated with the value true in the padded areas.

The scene is rendered from the viewpoint of an orthogonal cam-
era and it consists of two  triangles that represent a quadrilateral
polygon of the same size of the textures.

The process is a quite straightforward image processing algo-
rithm. It requires a kernel and the radius of the kernel is the width,
in texels, of the desired padding. In this case, one texel is enough
because the system uses nearest-neighbor interpolation to sample
and render the layers. Each texel is tested as follows: the algorithm
samples Outline Mask to check whether the texel is part of the out-
line of a texture island. If that is the case, the algorithm samples
then Edited Area Mask to check whether its distance to the edited
area is less than or equal to the kernel radius. The texels that satisfy
both conditions are part of the padded area and therefore updated

by the algorithm.

This padding adds some redundant information to the textures
and guarantees the right colour when the GPU samples and renders
the texture island borders. While this reduces the usable space in
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Table 1
This table shows the mean cell size achieved by both algorithms for the lion model.
The measurements are in square millimetres. The header of the columns shows the
texture resolution and depth of octree that are tested against each other.

Method 2048 - depth 11 4096 - depth 12 8192 - depth 13
ig. 5. 3D models used in the tests. Models (a) and (d) have colors per vertex while
eft  to right. The dimensions are also detailed for each model.

he texture, the reduction is not significant enough to be too costly
ecause our padding is only one texel wide.

. Results and discussion

In this section we compare the performance of the prototype
ased on our architecture against another system based on an
ctree. Specifically, we selected the system designed by Torres et al.
12], noted as OCT-TR, because both systems work directly with 3D

odels, implement structures to associate information indepen-
ently of the number of triangles of the 3D models, use information

ayers to organize the data and therefore, they are very similar in
erms of functionality.

The hardware specifications of the computer used to conduct
hese tests are as follows: CPU Intel i7 4790k at 4.00 GHz, 16 GB
DR3 RAM memory at 1866 MHz  and NVIDIA GTX 970 at 1.114 GHz
ith 4 GB GDDR5 RAM memory at 7 GHz.

All the tests measured the performance of the layer editing pro-
ess in equivalent scenarios. For our solution, this involves the two
lgorithms explained in the last section: Texture Editing and Tex-
ure Padding. For OCT-TR, it involves the CPU casting multiples rays
o find which voxels of the octree they collide with, updating the
ayer values accordingly and transferring the new version of the
ayer to the GPU.

We chose three levels of detail for the information layers to anal-
se the performance when the cell size decreases: three different
exture resolutions for our solution and three different depths for
CT-TR. Moreover, for each one of those three cases, we  selected
ve different editing tool sizes to analyse the performance when the
dited area growths. All these tests used the same five 3D models
depicted in Fig. 5).

Since octrees are volumetric spatial structures and textures are
i-dimensional spatial structures, there is no possible direct com-
arison between the area of the surface contained in one voxel
nd the area contained in one pixel. Therefore, we performed mul-
iple tests to establish a correspondence between the cell size
rovided by texture resolutions and octree depths and empirically
e reached to the following results: the 2048 × 2048 texture res-

lution is similar in terms of cell size to an octree depth of 11; the
096 × 4096 texture resolution, to an octree depth of 12 and the
192 × 8192 texture resolution, to an octree depth of 13. Table 1
hows the mean cell size, in square millimetres, achieved by both

ystems for the lion model. The results for the other four models
re included in the appendix that accompany this article and they
ollow a similar pattern where our solution usually offers smaller

ean cell size than OCT-TR.
Our approach 0.7702 0.1926 0.0481
OCT-TR 0.8752 0.2188 0.0547

While our method had no problem to handle the Thai statue, it
is important to note that the tests of OCT-TR with the depths of 12
and 13 for this model could not be completed. OCT-TR required a
high amount of memory to create the octree itself and the rest of its
structures. The memory manager of the operative system showed
that the system was using over 30 GB of virtual memory before the
application crashed.

Fig. 6 shows how the performance evolves when the edited area
changes under a logarithmic scale. After a detailed examination,
we can conclude that our approach exhibits a significantly bet-
ter behaviour: the results growth linearly in contrast with those of
OCT-TR. Though the theoretical behaviour of our algorithm seems
to be linear, this turns to be constant in practice due to the almost
zero slope of the line, no matter the size of the editing tool. The
reasons behind this excellent performance are explained by the
good use of the GPU resources. Our algorithm allocates the work-
loads between GPU cores evenly and minimises the stalls in the
GPU execution pipeline because there is no interdependencies in
the calculations. All the operations are independent and inexpen-
sive in terms of cost; they also use structures (textures) that are
completely optimised by the architecture of GPUs. In contrast, the
poor results obtained by OCT-TR are due to the own  nature of the
octree. Unlike our solution, this structure resides in the primary
memory and the CPU computes all the operations. Concretely, the
editing process involves the casting of multiple rays over the dif-
ferent voxels of the structure. The bigger is the editing area, the
higher is the number of rays and collisions to check. The depth of
the octree is also critical in terms of complexity because the voxels
are halved by two in each dimension between consecutive depths
and therefore, the number of collision tests growths exponentially.

Fig. 7 shows, under a logarithmic scale, how the performance
evolves when each 3D model is edited with an editing tool of the
same size. After analysing the results, we conclude that our solu-
tion exhibits a better performance and a completely consistent

behaviour across the five models. The time required to complete the
editing operation increases when the number of triangles is higher
or when the texture grows bigger. These results are reasonable
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Fig. 6. These graphs show the tests results, under logarithmic scale, for the editing of layers of two  models: a: vessel; b: Amazon. Tool radius corresponds to the radius of
the  editing tool in pixels. The solid lines correspond to our approach and the dashed lines to OCT-TR.

F  of lay
l nized
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i

ig. 7. These graphs show the tests results, under logarithmic scale, for the editing
eft  graph and two hundred pixel radius on the right graph. The 3D models are orga
atched bars to OCT-TR.

ecause even though our solution takes advantage of the paral-
elism of GPUs, GPU resources are limited. At the same time, our
lgorithm performs better than expected: the difference between
he results of the vessel and the Thai statue is always less than
ne order of magnitude even though there is a difference of almost

wo orders of magnitude in terms of geometry. In contrast, OCT-TR
hows inconsistencies between models because the performance
s highly dependent on how well balanced the octree is and which
ers using the same tool size on each model. Seventy pixel radius was used on the
 by number of triangles. The solid colour bars correspond to our approach and the

area is edited. When objects are projected onto octrees, one of their
main features is the ability to discard complete octants in order to
reduce the number of collisions to check. The shape of 3D mod-
els and changes in their orientation can make the central region of
the octree heavily populated. Projecting the editing tool onto that

region can make impossible to discard any octant in advance due
to all of them contain sections of the model, affecting negatively
to the performance. Therefore, the shape and orientation of 3D
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Fig. 8. This graph shows the amount of data, under logarithmic scale, that needs to
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Symp, Torino, Italy, 2005, pp. 1–9.
e transferred between CPU and GPU during each editing operation. The solid colour
ars correspond to our approach and the hatched bars to OCT-TR.

odels are critical for spatial structures such as octress. The vessel
nd its sloped orientation is a perfect example of this disadvan-
age. It is the more demanding model even though it has the lowest
umber of triangles. Moreover, the performance is two  orders of
agnitude worse than our solution in the worst case tested, taking

ver a second to complete one single editing operation.
Fig. 8 shows, under a logarithmic scale, the amount of data that

ur approach and OCT-TR transfer to the GPU for each editing oper-
tion. After analysing the results, it is evident that our approach
erforms significantly better. Since our layers always reside in GPU,
ur solution only transfers the 64 bytes of the matrix that repre-
ents the position of the editing tool. In contrast, OCT-TR uses two
ifferent representations for its layers: the primary memory stores
he data and the GPU memory stores the colours. Therefore, OCT-
R have to send the updated version of the layer colours to the GPU
n order to visualize the changes. These transfers require almost
00 Megabytes (MB) for the more detailed layers (depth 13) of the
essel every time an editing operation is performed.

Finally, our solution is usually more space efficient too. While
ur layers are bigger in size, our 3D model representation is more
ompact because it is constant in terms of space independently
f the resolution of the layers. Unlike our solution, OCT-TR subdi-
ides its meshes when the octree depth increases. Therefore, our
pproach is better when the number of layers used simultaneously
s below a threshold. Using the vessel as example, our system is

ore efficient in terms of space with less than eleven layers. Specifi-
ally, the size of our 3D model is 12 MB  while OCT-TR requires 1.268
B to store its model at depth of 13. However, for the highest res-
lution, the size of our layers is 327 MB  while the size of OCT-TR
ayers is 199 MB.

. Conclusions

In this article we have proposed an efficient architecture for

ultural heritage information systems. We  also have carried out
mpirical tests comparing our approach to OCT-TR, clearly demon-
trating that our representation is more efficient and can handle

[

eritage 41 (2020) 142–151

larger models. The strongest advantages of our approach are sum-
marized in the following list:

• the size of our meshes is constant while OCT-TR subdivide its
meshes when layer resolution is increased. This more compact
format is valuable when researchers need to share information
during field works;

• the required time for the creation of our structures is insignificant
in comparison with the creation time of the octree;

• our structures always reside in GPU;
• all the operations are computed in GPU;
• the data-transfers between CPU and GPU are close to zero;
• during the editing of the layers, the size of the editing tool does

not affect the performance of the algorithm.

In conclusion, our architecture structures the information in
thematic layers, uses 2D textures to store them and texture coordi-
nates to index their information. Furthermore, it takes advantage
of the inherent parallelism of GPUs to manage and operate these
layers.
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